공유 레이어1 효율적인 AI 학습의 진화, 다중 태스크 학습의 모든 것 인공지능(AI)과 머신러닝(ML) 분야는 날이 갈수록 발전을 거듭하고 있습니다. 그중에서도 다중 태스크 학습(Multi-Task Learning, MTL)은 단일 태스크 학습의 한계를 극복할 수 있는 혁신적인 학습 방식으로 주목받고 있습니다. 전통적인 단일 태스크 학습은 하나의 모델이 하나의 작업만 수행하는 방식입니다. 그러나 다중 태스크 학습에서는 하나의 모델이 여러 작업을 동시에 학습하도록 하여, 데이터 효율성과 연산 자원 절약이라는 이점을 제공합니다. 다중 태스크 학습은 자연어 처리(NLP), 컴퓨터 비전(CV), 음성 인식(Speech Recognition) 등 다양한 분야에서 성과를 보이고 있습니다. 특히 추천 시스템, 자율주행 자동차, 헬스케어 AI와 같은 복합적인 시스템에 더욱 중요한 기술로.. 2025. 1. 5. 이전 1 다음